機会学習アプローチにより集中治療室入室時の医療関連感染症を予測する:SPIN-UTIプロジェクトの結果

2021.06.30

A machine learning approach to predict healthcare-associated infections at intensive care unit admission: findings from the SPIN-UTI project

 

M. Barchitta*, A. Maugeri, G. Favara, P.M. Riela, G. Gallo, I. Mura, A. Agodi, on behalf of the SPIN-UTI Network

*University of Catania, Italy

 

Journal of Hospital Infection (2021) 112, 77-86

 

 

背景

集中治療室(ICU)において医療関連感染症(HAI)のリスクがより高い患者を同定することは、公衆衛生にとって重要な課題である。機械学習により、患者のリスク層別化が改善され、目標を絞った感染予防・制御介入につながる可能性がある。

 

目的

ICU における HAI リスクの予測を目的としたSimplified Acute Physiology Score(SAPS)IIの性能を、従来の統計学的アプローチと機械学習アプローチの両方を用いて評価すること。

 

方法

本研究では、Italian Nosocomial Infections Surveillance in Intensive Care Units プロジェクトから患者7,827例のデータを用いた。Support Vector Machines(SVM)アルゴリズムを適用して、性別、患者の搬送元、急性冠動脈疾患に対する非外科的治療、外科的介入、入室時の SAPS II、侵襲的デバイスの存在、外傷、免疫不全、ならびに ICU 入室に先立つ 48 時間以内の抗菌薬療法に従って分類した。

 

結果

HAI リスクの予測における SAPS II の性能は、受信者動作特性曲線における曲線下面積が 0.612(P < 0.001)、正確度が56%であった。SAPS II について、ICU 入室時の他の特性とともに検討した場合、検証セットについては SVM 分類子の正確度は 88%、AUC は 0.90(P < 0.001)であった。SAPS II の変数を除去して同じ SVM モデルを検討した場合の予測能はより低かった(正確度 78%、AUC 0.66)。

 

結論

本研究から、SVM モデルは、ICU 入室時に HAI リスクが高い患者の早期予測において有用なツールであることが示唆された。

 

サマリー原文(英語)はこちら

 

監訳者コメント

感染対策分野では、予後予測や耐性菌保有の予測、あるいは COVID-19 の可能性の予測など様々な予測や推定が行われる。この分野における機械学習や AI に期待するところは大きい。

 

同カテゴリの記事

2011.01.31

Procalcitonin as an early indicator of outcome in sepsis: a prospective observational study

2022.04.20
Automated surveillance systems for healthcare-associated infections: results from a European survey and experiences from real-life utilization

J.D.M. Verberk*, S.J.S. Aghdassi, M. Abbas, P. Nauclér, S. Gubbels, N. Maldonado, Z.R. Palacios-Baena, A.F. Johansson, P. Gastmeier, M. Behnke, S.M. van Rooden, M.S.M. van Mourik
*University Medical Centre Utrecht, the Netherlands

Journal of Hospital Infection (2022) 122, 35-43




2019.02.22

Planning to halve Gram-negative bloodstream infection: getting to grips with healthcare-associated Escherichia coli bloodstream infection sources

2017.07.31

Stenotrophomonas maltophilia in a university hospital of traditional Chinese medicine: molecular epidemiology and antimicrobial resistance

2020.05.23

Results of a national system-wide quality improvement initiative for the implementation of evidence-based infection prevention practices in Brazilian hospitals
M.M. de Miranda Costa*, H.T. Santana, P.J. Saturno Hernandez, A.A. Carvalho, Z.A. da Silva Gama
*Brazilian Health Regulatory Agency, Brazil
Journal of Hospital Infection (2020) 105, 24-34