機会学習アプローチにより集中治療室入室時の医療関連感染症を予測する:SPIN-UTIプロジェクトの結果

2021.06.30

A machine learning approach to predict healthcare-associated infections at intensive care unit admission: findings from the SPIN-UTI project

 

M. Barchitta*, A. Maugeri, G. Favara, P.M. Riela, G. Gallo, I. Mura, A. Agodi, on behalf of the SPIN-UTI Network

*University of Catania, Italy

 

Journal of Hospital Infection (2021) 112, 77-86

 

 

背景

集中治療室(ICU)において医療関連感染症(HAI)のリスクがより高い患者を同定することは、公衆衛生にとって重要な課題である。機械学習により、患者のリスク層別化が改善され、目標を絞った感染予防・制御介入につながる可能性がある。

 

目的

ICU における HAI リスクの予測を目的としたSimplified Acute Physiology Score(SAPS)IIの性能を、従来の統計学的アプローチと機械学習アプローチの両方を用いて評価すること。

 

方法

本研究では、Italian Nosocomial Infections Surveillance in Intensive Care Units プロジェクトから患者7,827例のデータを用いた。Support Vector Machines(SVM)アルゴリズムを適用して、性別、患者の搬送元、急性冠動脈疾患に対する非外科的治療、外科的介入、入室時の SAPS II、侵襲的デバイスの存在、外傷、免疫不全、ならびに ICU 入室に先立つ 48 時間以内の抗菌薬療法に従って分類した。

 

結果

HAI リスクの予測における SAPS II の性能は、受信者動作特性曲線における曲線下面積が 0.612(P < 0.001)、正確度が56%であった。SAPS II について、ICU 入室時の他の特性とともに検討した場合、検証セットについては SVM 分類子の正確度は 88%、AUC は 0.90(P < 0.001)であった。SAPS II の変数を除去して同じ SVM モデルを検討した場合の予測能はより低かった(正確度 78%、AUC 0.66)。

 

結論

本研究から、SVM モデルは、ICU 入室時に HAI リスクが高い患者の早期予測において有用なツールであることが示唆された。

 

サマリー原文(英語)はこちら

 

監訳者コメント

感染対策分野では、予後予測や耐性菌保有の予測、あるいは COVID-19 の可能性の予測など様々な予測や推定が行われる。この分野における機械学習や AI に期待するところは大きい。

 

同カテゴリの記事

2021.11.30
Identifying drivers for user preference and acceptability of different hydro-alcoholic hand rub formulations

D. Verwilghen*, K. Osiak, A.D. Shaw, K. Averay, G. Kampf, G. van Galen
*University of Sydney, Australia

Journal of Hospital Infection (2021) 117, 17-22


2011.06.30

Prevalence of antiseptic-resistance genes in Staphylococcus aureus and coagulase-negative staphylococci colonising nurses and the general population in Hong Kong

2019.03.12

A microbiological assessment of sterile surgical helmet systems using particle counts and culture plates:recommendations for safe use whilst scrubbing

2024.01.31
Cost-effectiveness of a real-time spatiotemporal mapping surveillance system for meticillin-resistant Staphylococcus aureus prevention

Y. Cai*, E.C. Philips, S. Arora, J.X.Y. Sim, W. Chow, N. Nazeha, S. Whiteley, M.Y.X. Auw, D.C. Tiang, S.L. Neo, W. Hong, I. Venkatachalam, N. Graves
*Duke-NUS Medical School, Singapore

Journal of Hospital Infection (2024) 143, 178-185



2016.10.31

Reduction in Clostridium difficile infection associated with the introduction of hydrogen peroxide vapour automated room disinfection