機会学習アプローチにより集中治療室入室時の医療関連感染症を予測する:SPIN-UTIプロジェクトの結果
A machine learning approach to predict healthcare-associated infections at intensive care unit admission: findings from the SPIN-UTI project
M. Barchitta*, A. Maugeri, G. Favara, P.M. Riela, G. Gallo, I. Mura, A. Agodi, on behalf of the SPIN-UTI Network
*University of Catania, Italy
Journal of Hospital Infection (2021) 112, 77-86
背景
集中治療室(ICU)において医療関連感染症(HAI)のリスクがより高い患者を同定することは、公衆衛生にとって重要な課題である。機械学習により、患者のリスク層別化が改善され、目標を絞った感染予防・制御介入につながる可能性がある。
目的
ICU における HAI リスクの予測を目的としたSimplified Acute Physiology Score(SAPS)IIの性能を、従来の統計学的アプローチと機械学習アプローチの両方を用いて評価すること。
方法
本研究では、Italian Nosocomial Infections Surveillance in Intensive Care Units プロジェクトから患者7,827例のデータを用いた。Support Vector Machines(SVM)アルゴリズムを適用して、性別、患者の搬送元、急性冠動脈疾患に対する非外科的治療、外科的介入、入室時の SAPS II、侵襲的デバイスの存在、外傷、免疫不全、ならびに ICU 入室に先立つ 48 時間以内の抗菌薬療法に従って分類した。
結果
HAI リスクの予測における SAPS II の性能は、受信者動作特性曲線における曲線下面積が 0.612(P < 0.001)、正確度が56%であった。SAPS II について、ICU 入室時の他の特性とともに検討した場合、検証セットについては SVM 分類子の正確度は 88%、AUC は 0.90(P < 0.001)であった。SAPS II の変数を除去して同じ SVM モデルを検討した場合の予測能はより低かった(正確度 78%、AUC 0.66)。
結論
本研究から、SVM モデルは、ICU 入室時に HAI リスクが高い患者の早期予測において有用なツールであることが示唆された。
監訳者コメント:
感染対策分野では、予後予測や耐性菌保有の予測、あるいは COVID-19 の可能性の予測など様々な予測や推定が行われる。この分野における機械学習や AI に期待するところは大きい。
同カテゴリの記事
Sensitive microscopic quantification of surface-bound prion infectivity for the assessment of surgical instrument decontamination procedures T.J. Secker*, R.C. Hervé, C.W. Keevil *University of Southampton, UK Journal of Hospital Infection (2023) 132, 116-124
Infection control practices among hospital health and support workers in Hong Kong
Structuring our response to hospital outbreaks under conditions of uncertainty
Bacterial recolonization of the skin and wound contamination during cardiac surgery: a randomized controlled trial of the use of plastic adhesive drape compared with bare skin